562 research outputs found

    Structure, tritium depth profile and desorption from 'plasma-facing' beryllium materials of ITER-Like-Wall at JET

    Get PDF
    Tritium depth profile and its temperature programmed desorption rate were determined for selected samples cut out of beryllium tiles removed from the Joint European Torus vacuum vessel during the 2012 shut down. A beryllium dissolution method under controlled conditions was used to determine the tritium depth profile in the samples, whereas temperature programmed desorption experiments were performed to assess tritium release pattern. Released tritium was measured using a proportional gas flow detector. Prior to desorption and dissolution experiments, the plasma-facing surfaces of the samples were studied by scanning electron microscopy and energy dispersive X-ray spectroscopy. Experimental results revealed that > 95% of the tritium was localized in the top 30 –45 ÎŒm of the ‘plasma-facing’ surface, however, possible tritium presence up to 100 ÎŒm cannot be excluded. During tem- perature programmed desorption at 4.8 K/min in the flow of purge gas He + 0.1% H 2 the tritium release started below 475 K, the most intense release occurred at 725 –915 K and the degree of detritiation of > 91% can be obtained upon reaching 1075 K. The total tritium activity in the samples was in range of 2 –32 kilo Becquerel per square centimetre of the plasma-facing surface area.EURATOM 63305

    Impact of storage conditions on preparation of activated carbon from sheep wool fibres

    Get PDF
    Received: January 31st, 2023 ; Accepted: June 16th, 2023 ; Published: July 6th, 2023 ; Correspondence: [email protected] the European Union, up to 200 thousand tons (Zoccola et al., 2015) of sheep wool fibres, that are not used for textile fabrication, are a secondary by-product with wide field of application possibilities, including preparation of activated carbon. Taking into account, that wool fibres can be stored for long time, under impact of the local climate conditions (including low temperatures) before their application, for example, under variety of temperature, presence of air and light, different moisture conditions, it is necessary to estimate the impact of wool’s storage conditions on the preparation of activated carbon. In the present work, various parameters, such as, temperature, presence of air and daylight as well as humidity, were selected for comparison. After storage of wool fibres under selected various conditions, thermogravimetry/differential thermal analysis (TG/DTA) followed by with Fourier transform infrared (FTIR) spectrometry were used in order to estimate the impact of each parameter on the thermal decomposition processes: release of moisture, sulphur and nitrogen containing compounds and oxidative degradation followed by release of carbon dioxide. It was estimated, that one year of storage under varying conditions does not significantly affect the thermal decomposition properties of the wool fibres. However, minor impact of humidity absorbed from air on wool is observed. Wool samples that were stored at elevated humidity gave higher residual carbon yield (R) in comparison to the fibres stored in dry conditions. The obtained results are used to develop recommendations for preparation of activated carbon from wool fibres and for its application in air filtrating systems

    Comparison of the structure of the plasma-facing surface and tritium accumulation in beryllium tiles from JET ILW campaigns 2011-2012 and 2013-2014

    Get PDF
    In this study, beryllium tiles from Joint European Torus (JET) vacuum vessel wall were analysed and compared regarding their position in the vacuum vessel and differences in the exploitation conditions during two cam paigns of ITER-Like-Wall (LW) in 2011201211 WI) and 20132014 ILW 2) Tritium content in beryllium samples were assessed. Two methods were used to measure tritium content in the samples - dissolution under controlled conditions and tritium thermal desorption. Prior to desorption and dissolution experiments, scanning electron microscopy and energy dispersive x-ray spectroscopy were used to study structure and chemical composition of plasma.facing surface of the beryllium samples. Experimental results revealed that tritium content in the samples is in range of 2101 210 tritium atoms per square centimetre of the surface area with its highest content in the samples from the outer wall of the vacuum vessel (up to 1.910 atoms/cm in II.W1 campaign and 2410" atoms/cm in 11W2). The lowest content of tritium was found in the upper part of the vacuum vessel 2010 atoms/cmÂČ and 2.010 atoms/cm in ILWI and IIW2, respectively). Results obtained from scanning electron microscopy has shown that surface morphology is different within single tile, however if to compare two campaigns main tendencies remains similarEURATOM 63305

    Tritium in plasma-facing components of JET with the ITER-Like-Wall

    Get PDF
    Publisher Copyright: © 2021 Institute of Physics Publishing. All rights reserved.The ITER-Like-Wall project has been carried out at the Joint European Torus (JET) to test plasma facing materials relevant to ITER. Materials being tested include both bulk metals (Be andW) and coatings. Tritium accumulation mechanisms and release properties depend both on the wall components, their location in the vacuum vessel, conditions of exposure to plasma and to the material itself. In this study, bulk beryllium limiter tiles, plasma-facing beryllium coated Inconel components from the main chamber, bulk tungsten and tungsten coated carbon fibre composite divertor tiles were analysed. A range of methods have been developed and applied in order to obtain a comprehensive overview on tritium retention and behaviour in different materials of plasma facing components (PFCs). Tritium content and chemical state were studied by the means of chemical or electrochemical dissolution methods and thermal desorption spectroscopy. Tritium distribution in the vacuum vessel and factors affecting its accumulation have been assessed and discussed.publishersversionPeer reviewe

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET

    Get PDF
    Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Overview of JET results for optimising ITER operation

    Get PDF
    The JET 2019–2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019–2020, and tested the technical and procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle (α) physics in the coming D–T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed shattered pellet injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design and operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D–T benefited from the highest D–D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER

    New H-mode regimes with small ELMs and high thermal confinement in the Joint European Torus

    Get PDF
    New H-mode regimes with high confinement, low core impurity accumulation, and small edge-localized mode perturbations have been obtained in magnetically confined plasmas at the Joint European Torus tokamak. Such regimes are achieved by means of optimized particle fueling conditions at high input power, current, and magnetic field, which lead to a self-organized state with a strong increase in rotation and ion temperature and a decrease in the edge density. An interplay between core and edge plasma regions leads to reduced turbulence levels and outward impurity convection. These results pave the way to an attractive alternative to the standard plasmas considered for fusion energy generation in a tokamak with a metallic wall environment such as the ones expected in ITER.& nbsp;Published under an exclusive license by AIP Publishing
    • 

    corecore